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Abstract-The problem of combined free and forced convection, in a fully developed laminar steady 
flow through vertical ducts under the conditions of constant axial heat flux and uniform peripheral 
wall temperature, is considered. Finite element solution algorithm with triangular elements and 
piecewise linear interpolation polynomials for temperature and velocity profiles are derived for ducts 
with arbitrary shape. Numerical values for Nusselt numbers at selected Rayleigh numbers are obtained 

for the special cases of square and triangular ducts. 

NOMENCLATURE 

‘4, cross-sectional area of the duct; 
a:, a$, a;, constants in equation (12); 
{B}, global column matrix defined by 

equation (26b); 

{B’I, nodal column matrix defined by 
equation (23b); 

C, axial temperature gradient; 
C specific heat at constant pressure; 
c{,‘c$, cg, constants in equation (12); 

displacement ma&x defined by 
equation (21~); 
transpose of [De]; 
equivabnt hydraulic diameter, 4A/P; 
total number of finite elements; 
nodal matrix defined by equation (23d); 
global matrix defined by equation (26b); 
gravitational acceleration; 
average peripheral heat-transfer coefficient; 
vertices of the triangular element; 
thermal conductivity of the fluid; 
pressure gradient parameter, 

- d2[dP*ldz* + p:gl/pc+ ; 
nodal matrix defined by equation (23~); 
global matrix defined by equation (26b); 
dummy index; 
total number of nodal points; 
Nusselt number, hd/kf ; 
dummy indexes; 
perimeter of the duct; 
column matrix defined by equation (14a); 
transpose of {p} ; 

TGraduate student. 
SProfessor. 

[R”l, 
Ra, 
T 
T W, 

$1. 

IT’), 

4 

t Ill, 

u*, 

V, 

ve, 

matrix defined by equation (14d); 
Rayleigh number, p*2gCPC/?d4/pkf; 
temperature; 
wall temperature [dimensional]; 
wall temperature at z = 0 [dimensional]; 
global column matrix defined by 
equation (Ha); 
nodal column tnatrix defined by 
equation (14c); 
temperature difference defined by 
equation (4) [dimensional]; 
mean temperature difference defined by 
equation (27b) [dimensionless]; 
velocity in x-direction [dimensional]; 
variational integral defined by equation (11); 
variational integral defined by equation (15b): 

v:, v-, I/se> yce, variational integrals defined by 

v* 
{h 
weI, 

w*, 
W, 

* 
Will, 

equation (22b); 
velocity in y-direction [dimensional]; 
global column matrix defined by 
equation (18a); 
nodal column matrix defined by 
equation (14b); 
velocity in z-direction [di,mensional]; 
dimensionless velocity in z-direction; 
mean velocity [dimensional]; 

x*, y*, z*, Cartesian coordinates LdimensionalJ; 

x, y, z, dimensionless coordinates, x = x*/d, 
y = y*/d, z = z*/d; 

i 3: 

column matrix; 
matrix. 

Greek symbols 

CI, /?, y, quantities defined in equation (14d); 

IJL, viscosity; 

P*, density [dimensional]. 
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Subscripts 

0, reference point at 2 = 0; 

w, on the wall. 

A. L. NAYAK ar 

Superscripts 

*, 

e, 

dimensional quantities; 

quantities associates with a particular 

triangular element. 

INTRODUCTION 

THE PROBLEM of combined free and forced convection 

in vertical ducts, under the conditions of constant axial 

heat flux and uniform peripheral wall temperature, has 

important applications in compact heat exchangers 

where design considerations may dictate ducts with 

unconventional shapes. Although numerous studies on 

this problem have been conducted both theoretically 

and experimentally, analytical solutions have been 

confined to ducts with relatively simple shapes such 
as rectangular [l-4], circular [5,6], triangular [7], 
and polygonal [8]. For more complicated geometries, 

where analytical solutions are not possible, recent 
developments in numerical techniques s!ggest that it 
can best be handled by means of the finite element 

method (FEM). 
In this paper, finite element solution algorithm 

with triangular elements and piecewise linear inter- 

polation polynomials for temperature and velocity 

profiles are derived for ducts with arbitrary shape. A 
computer program embodying the solution algorithm 

has been developed. By specifying the locations of 
boundary and interior nodes and other parameters as 
input data, numerical values for Nusselt number, 

velocity, and temperature profiles in a duct with any 
shape can be obtained. For illustration: computations 
were carried out for a square duct; an equilateral- 
triangular duct; a 30-60 right-triangular duct; and a 

right-angled, isosceles-triangular duct. Comparison of 
these numerical results to those of the exact solutions 

shows that they are in good agreement. Comparison 
between finite element method and the finite difference 
method for a square duct is also made. 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS 

Pr$+$)=!$+p*g(l-8t*), (5) 

k,($+$) = p*C,Cw*. (6) 

As in [l-S], the mathematical formulation of the The boundary conditions are t* = co* = 0 on the wall. 

problem is based on the following assumptions: As in [2,4,7,8], we shall now introduce the follow- 

The fluid is assumed to be viscous and- heat con- ing dimensionless variables; 

ducting and in a steady motion. 
Fully developed velocity and temperature profiles 

x = x*/d, Y = y*ld, 

are assumed. 
t = t*Jp*C,Cd’w;Jk/, (7) 

Fluid properties are assumed to be constant; w = w*/w;, 

except the density in formulating the body-force where 
term, where the density is linear to and varying 1 
with temperature. a*=- m 

A ff co* dx* dy* 

Id PING CHENG 

4. Frictional heating due to viscosity is neglected. 

5. No internal heat generation. 
6. Heat input in the axial direction, i.e. in z-direction, 

is constant. 
7. Wall temperature is uniform in the transversed 

(x-y) plane. 
For a fully developed incompressible laminar flow, 

Maslen [9] has shown that the velocities transverse 

to the flow are zero, namely, u* = v* = 0. Since 
aa*/&* = 0 for a fully developed flow, the continuity 

equation is automatically satisfied. With u* = v* = 0, 
the momentum equations in the x and y directions 
give +*/ax = ay* = 0, whereas the momentum equa- 

tion in the z-direction gives 

With the conditions u* = v* = 0 and the assumptions 

(5) and (6), the energy equation becomes 

a2T* a2T* a2T* 
= p*cpa,*~. (2) 

For a fully developed temperature profile and constant 
axial heat flux, Seban and Shimazaki [lo] have shown 
that aT*/az* = dT,*/i?z* = C where C is a constant. It 

follows that the wall temperature is given by 

T,*(z*) = T; + Cz*, (3) 

where we have also taken into consideration of assump- 
tion (7). Equation (3) suggests that the temperature 

distribution in the flow field is of the form 

T*(x*, y*, z*) = T,(z*) + t*(x*, y*). (4) 

Substituting equation (4) into equations (1) and (2) and 
assuming that the density varies linearly with tempera- 

ture in the body force term, namely, 

P* = p:[l-BP*-T31, 

we have 
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is the mean velocity in the z-direction, and d = 4A/P 
is the equivalent diameter with A denoting the cross- 
sectional area and P the perimeter of the duct. 
Equations (5) and (6) in dimensionless form are given by 

azw azw 
,x,+,+Rat+L=O, 

ay 

(9) 

where L and Ra are respectively the pressure gradient 
parameter and the Rayleigh number given by L = 
-d’[dp*/dz*+&g]/pwz and Ra = p*‘gC,C/ld4/pkf. 
The boundary conditions in terms of dimensionless 
variables are 

t = w = 0 on the wall. (10) 

Equations (8) and (9) with boundary condition (10) 
are a set of coupled linear partial differential equations 
with homogeneous boundary conditions. It is noted 
that, for the case of Ra = 0, equations (8) and (9) are 
then decoupled with both the velocity and temperature 
fields governed by the Poisson equation btit with 
different inhomogeneous terms. The condition of 
Ra = 0 corresponds to either /3 = 0 or C = 0. The 
former corresponding to the case of incompressible 
flow where no free convection occurs; the latter 
corresponding to the case where wall temperature is 
uniform everywhere and equation (9) vanishes [3]. 

APPLICATIONS OF FINITE ELEMENT METHOD 

For cross-sections with simple shape such as rec- 
tangular, triangular, circular or polygonal, analytical 
solutions to equations (8) and (9) with boundary 
condition (10) have been obtained. For more com- 
plicated shapes, however, analytical solutions are not 
possible. It is the purpose of this paper to obtain 
numerical solutions to ducts with arbitrary cross 
sections by the application of the finite element method 
(see [ll, 121 for a general discussion of the finite 
element method). 

Instead of dealing directly with the differential 
equations, the finite element method is a numerical 
scheme to perform the extremization of the correspond- 
ing functional. It can be shown that the solution to 
equations (8) and (9) with boundary conditions (10) is 
equivalent to extremizing the following functional [13] 

V= l[A{[($y+($r]-2w(L+Rat) 

- Ra[(gy + (Ey]}dxdy, (II) 

where A is the cross-sectional area of the duct. 

We now subdivide the cross section of the duct into 
a number of “finite elements”. These finite elements 
may take any geometric shape or size. In general, a 
triangular element is preferred since it has a more 
flexible structure enabling them to approximate arbi- 
trary region with greater fidelity. For this reason, the 
authors chose the triangular shape as the finite element, 
with vertices of the triangle as nodal points denoting 
by the integers, i, j and k. Within the triangular 
element, we assume piecewise linear interpolation 
polynomials for velocity and temperature distributions. 
Thus we have 

we = c’l +c;x+c~y, 

te = a? +a$x+agy, 
(12) 

where ci and a: (m = 1,2,3) are constants to be 
expressed in terms of wi, Wj, w,, ti, ti, tk which are the 
values of w and t at the vertices located at (Xi, yi), 
(xj, yj) and (xk, yk). hIpOSing (12) on the nodal values 
at the vertices of the triangular element, equation (12) 
can be written in the following matrix form 

me = {P}=[R~]{W~}> 

te = {pJr[R’]{~‘}, 
(13) 

where {p}, {IV’}, and (T’} are column matrix given by 

(144 

(14W 

(14c) 

and 

(144 

where A’ = + 1 x~~Y,~ - xjkyij 1 is the area of the triangular 
elementandxij~~~-x~,y,~~y~-y~,ol,~x,y,-x,y,, 
p, = y, - y,, yp = x,-x( with the indices (p, q. Y) per- 
mute cyclicly in the order (i, j, k). 

We now break up the integral (11) into E elements. 
Thus, we have 

v= i: ve, 
e=l 

(Isa) 
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where and 

Substituting equations (13) into equations (15) and 

performing the integration, we have 

l?V 

{-I- iiW 

and 

T/’ = .f;(oi, wj, wk, ti, tj, tk), (16a) 

> 

I 

8V 

’ i-i- 8T 

where the subscript N denotes the total number of 
then equation (17) can be rewritten as 

nodes in the cross-section. Because the required nodal 
values of temperature and velocity are those that 
extremize V, the unknown nodal values must satisfy 

the set of linear algebraic equations given 

ZV 

dW 4 2V 
= {O}, 

2T 

?V 

?t, 

?V 

?t, 

r7V 

at, 

, (18b) 

(194 

where 

= {O}. (17) 
The derivatives of V/’ with respect to {W} and {T} 

in equation (19b) is a column matrix that is mostly 
zero because V’ depends only on wir Wj, e&, and 

ti, tj, and tk as given by equation (16a). It follows that 

Now, if we denote the global column vectors {W} 
lfXf”l 

and {T} by I-1 = aw 

, (T} = (184 

0‘ 

c7V’ 

i?Wi 

?V’ 

?Wj 

4th row 

-jth row, 

-kth row 
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av= 1 1 -= 
aT 

(20) 

e(Wi, Wj, Wk) E 2 
ss 

Lw’ dx dy, 
A“ 

ve(Oi, Wj, Cl&, fi, tj, tt) G -2 
ss 

Rawetedx dy. 
A' 

Substituting equation (13) into equations (22b) and 
differentiating, it can be shown that 

where the position of the non-vanishing coefficients 
vary from element to element since the values of 
i, j, and k are different for each element. As suggested 
by Myers [12], it will be convenient to rewrite the 
above column matrix as 

r$) = [De]{&} and {;I = [D’]{g}, (21a) 

av= r-1 awi 
av= 

i- ati 

and [De] is the displacement matrix given by 

-ith row 

[D’] E 

b 0 o- 
1 0 0 

0 0 0 

. . 

. . 

0 1 0 
. . . 
. . . 

0 0 1 
. 

. . . 

0 0 0 

-jth row 

-kth row, 

> @lb) 

(214 

which is a N x 3 matrix with the location of non- 
vanishing coefficients varying from element to element. 

To obtain the explicit expressions for {aVe/a We} 
and {We/aTe}, it is convenient to consider the integral 
(15b) in several parts by writing it as 

Ve(Wi,Wj,Wt,ti,tj,t~)= I/we+I/;e+r++, (22a) 

{ 1 g = [F’]{W’}, 

av, 1 1 ~ = {O}, awe 

av,e I 1 - = -L(F), awe 

where 

2 1 1 

[WI=-$ 1 2 1 ) 

[ I 1 1 2 

[F’] E 2Ae 

txijYjk - xjk Yij)’ 
[ 

fil fi2 

symm~r~c 

with 

(234 

Wb) 

(234 

f 13 

f 23 9 (234 

f 33 I 

fll ES (xi’,+Y$)~ fl2 s -(XikXjk+YikYjk)> 

fi3 E (XijXjkfyijYjk)t f22 z -‘&+Y~I 

h3 s -(XijXik+yijyik), f33 z (X$+Y$). 

The second matrix expression (23b) is given by Semenza 
et al. [14] and by Myers [ 151. It follows from equations 
(19b), (21a), and (23) that 

= tl [Del [Fe1 { We> - L =il P'l {B’J 

+Ra i [De] [M’]{T’} = (0). (24a) 
==I 
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Similarly, we also have 

+ =il [Del [Me] {We> = IO}. CW 

It will be helpful if we next relate the nodal temperatures 

and velocities at the vertices of the triangular element, 
namely, {T’} and {We} to the entire set of nodal values 
{W} and {T). It can be shown that such a relation 

is given by [12] 

{We} = [D’]‘{W}, 

{T’} = [De-jT(T}, 
(25) 

where [De]’ is the transpose of the matrix [D’]. 
With the aid of equations (25), equations (24) can be 

written as 

[F] {W} + Ra[Ml {T} = L{B), 
[Ml {W + 4If'l{T~ = PI, 

(264 

where [F] and [M] are the global N x N matrix while 
{B} is a global N x 1 column matrix given respec- 

tively by 

IFI = eiI CD’1 [Fe1 PelT, 

[M] = i [De] [Me1 [De]‘, W-4 
e=l RESULTS AND DISCUSSION 

{B} = 5 [D’]{B’}. 
e=, 

Equations (26a) are a set of 2N linear, nonhomo- 

geneous, algebraic equations for the 2N unknowns 
w,(n = 1,2,. , N) and t,(n = 1,2,. , N). 

Thus far, we have not imposed the boundary con- 
ditions. If we try to solve the set of algebraic equations 
given by equations (26a) as it is, it would be found 
that the determinant of the coefficients is zero. This is 

as it should be because the set of algebraic equations, 
without specifying the boundary conditions, would 

have an infinite set of solutions. A unique solution is 
obtained only after boundary conditions are specified. 
To impose the boundary conditions, we simply replace 
the equations corresponding to the differentiation with 
respect to boundary nodes by the equations t, = o, = 0, 

where m represents the value of the boundary nodes. 
The resulting set of linear algebraic equations can then 
be solved for the nodal values of temperature and 
velocity by standard subroutines. 

After the nodal values of temperature and velocity 
are obtained, the average Nusselt number can be 
computed as follows. It has been shown that the average 
Nusselt number for fully developed flow in ducts under 

the condition of constant axial heat flux and uniform 
peripheral wall temperature is given by [16] 

hd 1 
Nu=~= -t,, 

where 

W) 

To express equation (27b) in terms of nodal velocities 
and temperatures, we note that equation (27b) can be 

written as 

E 

Iss 
o”t’dxdy 

e=1 ‘4’ 
t, = E I-,” (28) 

2 JJP me dx dy 

Substitution of equation (13) into equation (28) yields 

E 

(29) 

which can be evaluated once the nodal values of tem- 
perature and velocity have been computed. 

The finite element solution algorithm derived in the 
previous section is applicable to ducts of any shape. 
A computer program has been written to carry out the 
numerical solutions. By supplying the locations of the 

interior and boundary nodes, the values of i, j, and k 
for each element as well as the values of Ra and L, 
as input data to the computer program, nodal values 
of temperature, velocity, and Nusselt number for ducts 
with any cross-section can be computed. To assess the 
accuracy and convergence of the finite element method, 

computations were carried out for a square duct, an 
equilateral triangular duct, a right-angled isosceles 
duct, and a 30-60 right angle triangular duct. The 
results are compared with exact values which have 
been obtained by previous investigators. 

Square ducts 
The subdivision of a square duct into triangular 

finite elements can be done in many different ways. 
Three possible subdivisions of the duct are shown in 
Fig. 1 (with elements of equal size) and Fig. 2 (with 
elements of unequal size). The FEM solutions with two 
different subdivisions (corresponding to Fig. l(a) and 
Fig. l(b) respectively) were computed for a few 
selected sets of parameters Ra and L taken from [3]. 
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FIG. 1. Two different subdivisions (a and b) of a square duct into 
triangular finite elements of equal size. 

I 6 II 16 21 
X 

FIG. 2. Subdivision of a square duct into tri- 
angular finite elements of unequal size. 

The results are then compared with the exact solution 
as shown in Table 1. For the present problem where 
boundary values are zero, the two FEM solutions give 
identical results.* Furthermore, the FEM solutions 
converge rapidly to the exact solution as more nodal 
points are used. For a total number of 169 nodes, the 

maximum error of the FEM is 5.6 per cent at 
Ra = lOOn4 and L = 441%. 

In order to compare the FEM and FDM, numerical 
computations for a square duct with twenty-five nodes 
based on the standard five-point formula of the FDM 

*If the boundary conditions depend on position, two 
different arrangements of triangular elements would give 
different results (see [12]). The authors wish to thank the 
reviewers for their criticism which lead to the identification 
of some errors in the original manuscript. 

Table 1. Comparison of exact solutions and 
FEM solutions [with uniform mesh and discretization 
according to Figs. l(a) and l(b)] for Nusselt numbers 

(at various Rayleigh numbers) in a square duct. 

Ra 

No. of 
nodes 

25 
81 
169 

0 7r4 10n4 lOOn 

461 4.50 4.32 6.70 
3.85 3.87 4.30 7.60 
3.71 3.77 7.80 

Exact 

[3,81 
3.61 3.69 4.27 8.27 

y/, Error 
in the most 

accurate case 
2.1 2.1 0.7 1 5.6 

*While the exact values of Nu for other three cases 
are taken from Han [3], this value is obtained from [8]. 
We tend to agree with Iqbal et al. [8] that the value for 
this case given by Han [3] seems to be in error. 

were also carried out. It is interesting to note that, 
while the FEM (with triangular elements and linear 
interpolation polynomials) and the FDM for Poisson 
equation are identical to each other if both the 
boundary conditions and the inhomogeneous terms in 
the equation are independent of position, the FEM 

and the FDM solutions for Poisson equation are not 
the same if either the boundary conditions or the 
inhomogeneous terms is position dependent. It is for 
these reasons that the FEM and the FDM give identical 
results for velocity distribution and yet give different 
values for temperature distribution for the special case 
of Ra = 0 in the present problem. Comparison of the 
numerical results for FEM and FDM also shows that 
the FDM is more accurate than the FEM when a 
small number of nodes are used (see Table 2). In fact, 
while the FDM always gives symmetric results for 
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Table 2. Comparison of Nusselt numbers at various 
Rayleigh numbers for a square duct obtained by 

means of the FEM and FDM with twenty-five nodes 

RU 

Methods 

FEM 
FDM 

0 7c4 107.c” 1007c4 

4.67 4.50 4.32 6.70 
4.30 4.46 5.26 8.84 

Exact 

[3,81 
3.61 3.69 4.21 8.28 

symmetric boundary conditions, the FEM with tri- 

angular elements and linear interpolation polynomials 

sometimes gives slightly unsymmetric results (actually 
diagonally symmetric in the present problem) for 
symmetric boundary conditions; its values become 

more and more symmetric as more nodes are used 

in the FEM. 
One of the major advantages of the FEM is that 

unequal mesh size does not introduce additional com- 
plexity in the computer program. These characteristics 

of the FEM can be utilized with advantage by allow- 
ing greater density of elements in the critical regions 
where changes in the dependent variables are rapid. 

This consideration is desirable from the standpoint of 
economy, namely, it will give us more information in 
the critical region with less computer time than the 
more refined grid with uniform size. It is interesting 
to note that for the same number of nodes, non- 
uniform mesh of FEM, as in the case of FDM, will 

actually decrease in accuracy as indicated in Table 3. 

Table 3. Nusselt numbers at various Rayleigh 
numbers for a square duct by means of FEM 

with nonuniform finite elements 

No. of -- 
nodes 0 

Ra 

7r4 10n4 lOOn4 

25 5.00 4.8 4.55 7.07 
49 4.17 4.12 4.35 7.48 
81 4.07 4.36 7.68 

FIG. 3. SubdivisIon of a triangular 
duct into triangular finite elements 

of equal size. 

- 169nodes 

0.2 0.4 0.6 0.8 I.0 

X 

FIG. 4. Centerline temperature 
difference in a square duct. 

Triangular ducts 
The computer program which was used in the 

calculations of square ducts can also be used for the 
computation of triangular ducts by supplying the 
locations of the boundary and interior nodes. The 
division scheme found to be most convenient is to 
draw lines parallel to all sides of the duct thus 
discretizing the duct in finite elements with shapes 
similar to the cross-section of the duct as shown in 
Fig. 3. Computations werecarried out for an equilateral 

triangular duct, a right-angled isosceles triangular duct, 
and a 30-60 right triangular duct. 

Comparison of the exact values of Nusselt numbers 
at four different Rayleigh numbers for equilateral 
triangular duct obtained by Aggarwala and Iqbal [7] 
and that of the FEM with forty-five and ninety-one 
nodes are presented in Table 4. It is shown that numeri- 
cal results converge to the exact values as morr lodes 
are used. The maximum error of the FEM with 
ninety-one nodes is 12.3 per cent at Rayleigh number 
equal to 10’. Owing to the lack of computer time, 
only a crude mesh of forty-five nodes was attempted 
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x 

FIG. 5. Centerline velocity distri- 
bution in a square duct. 

Table 4. Comparison of exact solutions and FEM 
solutions for Nusselt number at various Rayleigh numbers 

in a equilateral triangular duct 

Ra 

FEM 
Exact Error 

45 nodes 91 nodes r71 (%I 

0 3.22 3.11 3.6 
500 3.71 3.72 3.75 0.73 

20000 8.74 940 10.06 6.5 
lo5 12.42 13.66 15.59 12.3 

Table 5. Comparison of exact solutions 
and FEM solutions for Nusselt numbers 

at various Rayleigh numbers in a 
30-60-90 triangular duct 

Ra 
FEM Exact 

(45 nodes) [71 

500 3.87 3.70 
2:E 4.89 8.79 9.97 5.19 

105 12.39 15.21 

Table 6. Comparison of exact solutions 
and FEM solutions for Nusselt numbers 

at various Rayleigh numbers in a 
45-45-90 triangular duct 

FEM Exact 
Ra (with 45 nodes) c71 

0 3.29 2.98 
2000 4.87 5.18 

20000 8.76 10.03 
105 12.47 IS.48 

for the case of right-angled isosceks triangular ducts 

and 30-60 right triangular ducts. These numerical 
results along with the exact values obtained by 

Aggarwala and Iqbal [7] are presented in Tables 
5 and 6. The agreement is good for such a crude mesh. 

Acknowledgement-Thefirst author(A.L.N.) wishes to thank 
Professor G. E. Myers for helpful discussions. 

REFERENCES 

1. S. Ostrach, Combined natural and forced convection 
laminar flow and heat transfer of fluids with and without 
heat sources in channels with linearly varying wall 
temperatures, N.A.C.A. TN 3141 (1954). 

2. L. S. Han, Laminar heat transfer in rectangular tubes 
with combined free and forced convection, J. Am. Sot. 
Naval Engrs 67,163-167 (1955). 

3. L. S. Han, Laminar heat transfer in rectangular channels, 
J. Heat Transfer 81C, 121-127 (1959). 

4. H. C. Agrawal, A variational method for combined free 
and forced convection in channels, Int. J. Heat Mass 
Transfer 5,439-444 (1962). 

5. B. R. Morton, Laminar convection in uniformly heated 
vertical pipes, J. Fluid Mech. 8, 227-240 (1960). 

6. P. C. Lu, Combined free and forced convection heat 
generating laminar flow inside vertical pipes with 
circular sector cross sections, J. Heat Transfer 82, 
227-232 (1960). 

7. B. D. Aggarawala and M. Iqbal, On limiting Nusselt 
numbers from membrane analogy for combined free and 
forced convection through vertical ducts, Int. J. Heat 
Mass Transfer 12,737-747 (1969). 

8. M. Iqbal, S. A. Ansari and B. D. Aggarwala, Effect of 
buoyancy on forced convection in vertical regular 
polygonal ducts, J. Heat Transfer 92,237-244 (1970). 

9. S. H. Maslen, Transverse velocities in fully developed 
flows, Q, Appl. Math. 16, 173-175 (1958). 

10. R. A. Seban and T. T. Shimazaki, Heat transfer to a 
fluid flowing turbulently in a smooth pipe with walls at 
constant temperature, Trans. Am. Sot. Mech. Engrs 73, 
803-809 (1951). 

11. 0. E. Zienkiewicz, The Finite Element Method in 
Engineering Science. McGraw-Hill, London (1971). 

12. G. E. Myers, Analytical Methods of Conduction Heat 
Transfer. McGraw-Hill, London (1971). 

13. M. Iqbal, B. D. Aggarwala and A. K. Khatry, On the 
conjugate problem of laminar combined free and forced 
convection through vertical non-circular ducts, J. Heat 
Transfer 94, 52-56 (1972). 



236 A. L. NAYAK and PING CHEN~; 

14. L. A. Semenza, E. E. Lewis and E. C. Rossow, Appli- 16. S. M. Marco and L. S. Han, A note on limiting 
cation of the finite element method to the multigroup Nusselt number in ducts with constant temperature 
neutron diffusion equation, Nucl. Sci. Engng 47.302. 310 gradient by analogy to thin-plate theory, Trans. Am. 
(1972). Sot. Mech. Engrs 77.6255630 (1955). 

15. G. E. Myers, Private communication (1972). 

METHODE DES ELEMENTS FINIS APPLIQUEE A LA CONVECTION 
THERMIQUE LAMINAIRE DANS DES CONDUITES VERTICALES 

A SECTION DROITE ARBITRAIRE 

R&m&On considere le probltme de la convection mixte pour un tcoulement laminaire permanent 
ttabli dans des conduites verticales, avec des conditions de flux thermique constant et de temperature 
parietale uniforme. L’algorithme aux elements finis avec elements triangulaire et interpolations poly- 
nomiales pour les profils de temperature et de vitesse est applique au cas des tubes de section droite 
arbitraire. On obtient les valeurs numiriques des nombres de Nusselt et des nombres de Rayleigh dans 

le cas des conduites a sections carree et triangulaire. 

UNTERSUCHUNG DES WARMEUBERGANGS BE1 LAMINARER 
KONVEKTIONSSTROMUNG IN SENKRECHTEN KANALEN MIT WILLKURLICHEN 

QUERSCHNITTEN MITTELS DER METHODE DER FINITEN ELEMENTE 

Zwammenfassung-Es wird das Problem der kombinierten freien und erzwungenen Konvektion in einer 
voll ausgebildeten stationlren Stromung durch vertikale Kanale mit den Bedingungen konstanten axialen 
Wlrmestroms und einheitlicher Wandtemperatur betrachtet. Finite-Element-Losungsalgorithmen mit 
Dreieckselementen und sttickweisen linearen Interpolationspolynomen fur Temperatur- und Geschwindig- 
keitsprofile werden fiir Kanale mit beliebigem Querschnitt abgeleitet. Numerische Werte fur Nusselt- 
Zahlen bei ausgewahlten Rayleigh-Zahlen erhalt man fur die Spezialfalle der quadratischen und 

dreieckigen Kanale. 

A,HAJlM3 KOHBEKTMBHOIO TEIIJl006MEHA IlPM JIAMMHAPHOM TEqEHMM 
B BEPTMKAJlbHblX KAHAJlAX fIPOM3BOJIbHO~O CEYEHMR METO+QOM 

KOHEYHblX 3JlEMEHTOB 

,\HHOlillIUR - B pa6OTC ,,aCC\,~T~UBL3CTCn n~_,O6,lCMa COBhWCTHO~ CBO60AHOCi U BblHy,KAeHHOfi 

KO,,,lCti,,,lU ,,,lU H0.lHOCTblO pa-3BUTOhl .flEihlUHi3PHOhI )‘CTaHOBUBLUeMC54 Te’teHUM B Be,,TUKaAbHblX 

KLtll;l:,;l\ lli>li llOCTOSlt,tiOhI OCCBOhl TCll:lOBO’rl tlOTOKC U OAHOpOAHOi TeMnepaType CTCHKU Ha WpU- 

~C~Wtl. fl.lR Kati~l.lOB n~>OU3BOJbHO~ (t)Ophlbl HOn~WH ZLITOPUTM peLHleHU5l MCTOAOM KOH’ZYHblX 

1 IC\lCt,T”B C T,,J~~O.lbHbl\lM L’lehlCHT~hlU U K)CO’,HblhlM IlMHeiiHblMU UHTeP~OJl~UUOHHblMU nOJIM- 

,tO\l~,\,U A:154 n,,O@t.l& CKOI>OCTM U TCLlnepL3T~pbl. a.154 ‘lZ3CTHblX CAyWeB KBaApaTHblX U TpeyrOJibHblX 

Kat,2L,O” “O.l)‘Wt,b, ~3HaYeHUR qt,CCJ H)‘CCenbTa “,,U Bbl6PaHHblX YUC.laX Pf2le% 


