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Abstract—The problem of combined free and forced convection, in a fully developed laminar steady

flow through vertical ducts under the conditions of constant axial heat flux and uniform peripheral

wall temperature, is considered. Finite element solution algorithm with triangular elements and

piecewise linear interpolation polynomials for temperature and velocity profiles are derived for ducts

with arbitrary shape. Numerical values for Nusselt numbers at selected Rayleigh numbers are obtained
for the special cases of square and triangular ducts.

NOMENCLATURE
A, cross-sectional area of the duct;
a$,a%, a5, constants in equation (12);
{B}, global column matrix defined by

equation (26b);

{B¢}, nodal column matrix defined by
equation (23b);

C, axial temperature gradient;

C,, specific heat at constant pressure;

cf,c,c§, constants in equation (12);

[D?], displacement matrix defined by
equation (21c);

[D]", transpose of [D¢];

d, equivalent hydraulic diameter, 44/P;

E, total number of finite elements;

[F¢], nodal matrix defined by equation (23d);

[F], global matrix defined by equation (26b);

g, gravitational acceleration;

h, average peripheral heat-transfer coefficient;

i,j,k, vertices of the triangular element;

ky,  thermal conductivity of the fluid;

L, pressure gradient parameter,
—d?[dp*/dz* + phg] /ucn ;

[M?], nodal matrix defined by equation (23c);

[M], global matrix defined by equation (26b);

m, dummy index;

N, total number of nodal points;
Nu, Nusselt number, hd/k, ;

n, dummy indexes;

P perimeter of the duct;

{p}, column matrix defined by equation (14a);
{p}T, transpose of {p};

tGraduate student.
1 Professor.

[R¢], matrix defined by equation (14d);

Ra, Rayleigh number, p*2gC, CBd*/uk;;

T, temperature;

T,, wall temperature [dimensional];

T,,  wall temperature at z = 0 [dimensional];

{T}, global column matrix defined by
equation (18a);

{T*}, nodal column matrix defined by

equation (14c);

t, temperature difference defined by
equation (4) [dimensional];

tw,  mean temperature difference defined by

equation (27b) [dimensionless];
u*,  velocity in x-direction [dimensional];
v, variational integral defined by equation (11);
Ve,  variational integral defined by equation (15b);
Ve, Ve, Ve, Ve, variational integrals defined by
equation (22b);
v*,  velocity in y-direction [dimensional];
{Ww}, global column matrix defined by
equation (18a);
{w*}, nodal column matrix defined by

equation (14b);
w*,  velocity in z-direction [dimensional];
w, dimensionless velocity in z-direction;

wk.  mean velocity [dimensional];

x*, y* z*, cartesian coordinates [dimensional];

x, y, z, dimensionless coordinates, x = x*/d,
y=y*d, z=z%d;

{}, column matrix;

[ ] matrix.

Greek symbols

o, 8,7, quantities defined in equation (14d);
N viscosity;
p*,  density [dimensional].
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Subscripts
0, reference point at z = 0;
w, on the wall.
Superscripts
*, dimensional quantities;
e, quantities associates with a particular

triangular element.

INTRODUCTION

THE PROBLEM of combined free and forced convection
in vertical ducts, under the conditions of constant axial
heat flux and uniform peripheral wall temperature, has
important applications in compact heat exchangers
where design considerations may dictate ducts with
unconventional shapes. Although numerous studies on
this problem have been conducted both theoretically
and experimentally, analytical solutions have been
confined to ducts with relatively simple shapes such
as rectangular [1-4], circular [5,6], triangular [7],
and polygonal [8]. For more complicated geometries,
where analytical solutions are not possible, recent
developments in numerical techniques suggest that it
can best be handled by means of the finite element
method (FEM).

In this paper, finite element solution algorithm
with triangular elements and piecewise linear inter-
polation polynomials for temperature and velocity
profiles are derived for ducts with arbitrary shape. A
computer program embodying the solution algorithm
has been developed. By specifying the locations of
boundary and interior nodes and other parameters as
input data, numerical values for Nusselt number,
velocity, and temperature profiles in a duct with any
shape can be obtained. For illustration: computations
were carried out for a square duct; an equilateral-
triangular duct; a 30-60 right-triangular duct; and a
right-angled, isosceles-triangular duct. Comparison of
these numerical results to those of the exact solutions
shows that they are in good agreement. Comparison
between finite element method and the finite difference
method for a square duct is also made.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

As in [1-8], the mathematical formulation of the

problem is based on the following assumptions:

1. The fluid is assumed to be viscous and heat con-
ducting and in a steady motion.

2. Fully developed velocity and temperature profiles
are assumed.

4. Fluid properties are assumed to be constant;
except the density in formulating the body-force
term, where the density is linear to and varying
with temperature.

4. Frictional heating due to viscosity is neglected.

5. No internal heat generation.

6. Heatinput in the axial direction, i.e. in z-direction,

is constant.

7. Wall temperature is uniform in the transversed

(x—y) plane.

For a fully developed incompressible laminar flow,
Maslen [9] has shown that the velocities transverse
to the flow are zero, namely, u* =v* =0. Since
dw*/dz* = 0 for a fully developed flow, the continuity
equation is automatically satisfied. With u* = v* =0,
the momentum equations in the x and y directions
give Op*/0x = dy* = 0, whereas the momentum equa-
tion in the z-direction gives

Slo* o dp*
”(W+W>=p*g+d_z;' (M
With the conditions u* = v* = 0 and the assumptions
(5) and (6), the energy equation becomes
02T* 0*T* O*T* oT*
k,(axm2 + s + 82*2> = p*C,w* prg (2

For a fully developed temperature profile and constant
axial heat flux, Seban and Shimazaki [ 10] have shown
that 0T*/0z* = 0T,*/dz* = C where C is a constant. It
follows that the wall temperature is given by

TX(z*) = TgE+Cz*, 3)

where we have also taken into consideration of assump-
tion (7). Equation (3) suggests that the temperature
distribution in the flow field is of the form

TH(x*, y*, 2%) = TFE*) + 1 (x*%, y¥). )

Substituting equation (4) into equations (1) and (2) and
assuming that the density varies linearly with tempera-
ture in the body force term, namely,

p* = pu[1-B(T*-T7)],

we have
w* w*\ op*
——t——— | = ——+ pkg(l1 - Bt*), 5
u(ax*Z + ay*2> aZ*+p g( ﬁ ) ( )
oir* P
kf(W—I-ay”) = p*Cpr*. (6)

The boundary conditions are t* = @* = 0 on the wall.
Asin [2,4,7,8], we shall now introduce the follow-
ing dimensionless variables;
x=x*d,  y=y*d,
t = t*/p*C,Cd*wi/k;, 7

w = o*/wn,

1
k= 1 j\J‘ o*dx*dy*

where
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is the mean velocity in the z-direction, and d = 44/P
is the equivalent diameter with 4 denoting the cross-
sectional area and P the perimeter of the duct.
Equations (5)and (6) in dimensionless form are given by

P 0w

—+—+Rat+L = 8

oty Rl 0, ()
ot ot
e —w=0 9
6x2+6y2 =0, )

where L and Ra are respectively the pressure gradient
parameter and the Rayleigh number given by L =
—d*[dp*/dz* + p}y g]/uw} and Ra = p**gC,CPRd* /uk;.
The boundary conditions in terms of dimensionless
variables are

t = w = 0 on the wall. (10)
Equations (8) and (9) with boundary condition (10)
are a set of coupled linear partial differential equations
with homogeneous boundary conditions. It is noted
that, for the case of Ra = 0, equations (8) and (9) are
then decoupled with both the velocity and temperature
fields governed by the Poisson equation but with
different inhomogeneous terms. The condition of
Ra =0 corresponds to either =0 or C=0. The
former corresponding to the case of incompressible
flow where no free convection occurs; the latter
corresponding to the case where wall temperature is
uniform everywhere and equation (9) vanishes [3].

APPLICATIONS OF FINITE ELEMENT METHOD

For cross-sections with simple shape such as rec-
tangular, triangular, circular or polygonal, analytical
solutions to equations (8) and (9) with boundary
condition (10) have been obtained. For more com-
plicated shapes, however, analytical solutions are not
possible. It is the purpose of this paper to obtain
numerical solutions to ducts with arbitrary cross
sections by the application of the finite element method
(see [11,12] for a general discussion of the finite
element method).

Instead of dealing directly with the differential
equations, the finite element method is a numerical
scheme to perform the extremization of the correspond-
ing functional. It can be shown that the solution to
equations (8) and (9) with boundary conditions (10) is
equivalent to extremizing the following functional [ 13]

L ) Fone
(22 o

where A is the cross-sectional area of the duct.

We now subdiyide the cross section of the duct into
a number of “finite elements”. These finite elements
may take any geometric shape or size. In general, a
triangular element is preferred since it has a more
flexible structure enabling them to approximate arbi-
trary region with greater fidelity. For this reason, the
authors chose the triangular shape as the finite element,
with vertices of the triangle as nodal points denoting
by the integers, i, j and k. Within the triangular
element, we assume piecewise linear interpolation
polynomials for velocity and temperature distributions.
Thus we have

o =c§+csx+csy,

e _ ¢ e e (12)
t*=dai+tas5x+asy,

where ¢f and a (m=1,2,3) are constants to be
expressed in terms of w;, w;, Wy, 4, t;, t, which are the
values of w and t at the vertices located at (x;, y;),
(x;,y;) and (xx, y;). Imposing (12) on the nodal values
at the vertices of the triangular element, equation (12)
can be written in the following matrix form

o = {p}"[RT{W},
= {p}"[RI{T"},

where {p}, {W*}, and {T°} are column matrix given by

(13)

1
{p}=<x7>, (14a)
y
;
wey=< w; », (14b)
Wy,
L
{T}=<1t; p, (14¢c)
[
and
{ oy O O
[Re]=ﬂ; Bp ﬂq ﬁr > (14d)
Yo Yo Yr

where A° = 3| Xy — X Vi is the area of the triangular
elementand xy; = x;— X;, Ve = Ve—Yjs € = XgVr — X, Vg,
Bo = Ya— Vs 7» = X,— X, with the indices (p, g,r) per-
mute cyclicly in the order (i, j, k).

We now break up the integral (11) into E elements.
Thus, we have

E
V=Y ve, (15a)
e=1
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Ve = il + o — 2w°(L + Rat®)
40 ax ay
ore 2 ot¢ 2
o o
ox cy

Substituting equations (13) into equations (15) and
performing the integration, we have

Ve = fl(a)i'« wj: Wy, t,‘, tj’ [k)~ (163)

and

E
V= Z Ve = filwy, wy,.... 05, L, 1,5, ...

e=1

sty), (16b)

where the subscript N denotes the total number of
nodes in the cross-section. Because the required nodal
values of temperature and velocity are those that
extremize V, the unknown nodal values must satisfy
the set of linear algebraic equations given

e
80)1
%

cw,

v
Cary
v
ot
v

v

T
S ¢ tN J

Now, if we denote the giobal column vectors {W}
and {T} by

r b Co Y
(6] 151

(0] >

(W} L. (18a)

If
LN
—
=
il
A

Wy Iy
. NJ NJ
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and
eV ) (v )
(‘}Cl)l Fll
cv v
Gy cty
vl < > ad e ) (18b)
awjf ©oler —j o
v av
P 'y
then equation (17) can be rewritten as
oV
oW
=10 19
av = Ok (19)
cT

av o E " ove
{ﬁ}z {OT‘E& V}z {e=1 5T}. (1%

The derivatives of V¢ with respect to {W} and {T}
in equation (19b) is a column matrix that is mostly
zero because V¢ depends only on w;, w;, wy, and
t;, t;, and t, as given by equation (16a). It follows that

rO\

ave

avel ]
%W}_< o

-ith row

-jth row,

-kth row
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o)

ove
e ot;
d = :

an {ar} 10
aove
ot

-ithrow

-jthrow, (20)

ove
\ atk J

where the position of the non-vanishing coefficients
vary from element to element since the values of
i, j, and k are different for each element. As suggested
by Myers [12], it will be convenient to rewrite the

above column matrix as
ove ove
=[D-=t, @1
{6T} [ ]{6T“}’( a)

ot = e

where

-kth row

(ave) (ove)
Ow; Ot;
avey | ave ave | ave
{W}= \ 30, [ {are}=< o, (- @Y
ove ave
[ oo Lot )

and [ D¢} is the displacement matrix given by

(0 0 0
1 0 O0/-ithrow
[Df=|0 0 O (21c)
0 1 0f-jthrow
0 0 1/|-kthrow,
0 0 0_

which is a N x 3 matrix with the location of non-
vanishing coefficients varying from element to element.

To obtain the explicit expressions for {3V¢/0W*}
and {8V/8T*}, it is convenient to consider the integral
(15b) in several parts by writing it as

V(@i @) O, i, b 1) = VE+VELVEFVE, (222)

231
where
e f awe 2 6(0" 2
Vilo;, o), wy) = Jel\Gx + % dxdy,
C T(ote\?  [ore\?
Vet t;, ) = — _
o= [ [(2) (2 v
(22b)
Vé(w;, o), ap) = 2 J‘ Lofdxdy,
r

V(s, @j, @y, by b, ) = —ZJJ Rawt*dxdy.
e

Substituting equation (13) into equations (22b) and
differentiating, it can be shown that

(o} = trrwe,

ot - O
{

(23a)
ovs L{B},
awe| = I
a‘/ce — R Me Te
et = Rafme (T,
where
1
(B} =34°<1 ¢, (23b)
1
2 11
Ae
[M]=-—7|1 2 1), (23c)
11 2
> fir fiz fis
) = ey fir faa |, (234)
g T XV o mmetric fis
with
i = 0G4YRY fi2 = —(aXia+ YaVi
fis = Cagxptygya) foz = Xic+vk,
f23 = —(xijx,'k"')/ijyik): f33 = (x'21+ylzj)

The second matrix expression (23b) is given by Semenza
et al. [14] and by Myers [15]. It follows from equations
(19b), (21a), and (23) that

{wp - L0

WFIW)-L ¥ (018

+Ra il [DF][M°){T*} = {0}. (24a)
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Similarly, we also have

(@113 waerir

+ 3 DM = (0] (%)

It will be helpful if we next relate the nodal temperatures
and velocities at the vertices of the triangular element,
namely, {T¢} and { W*} to the entire set of nodal values
{W} and {T}. It can be shown that such a relation
is given by [12]

{wep = D] {W},

(1) = [T .

where [D¢]” is the transpose of the matrix [D°].
With the aid of equations (25), equations (24) can be
written as

[F1{W} +Ra[M]{T} = L{B]},

(26a)

[M]{W} + LIFI{T} = {0},

where [ F] and [M] are the global N x N matrix while

{B} is a global N x 1 column matrix given respec-
tively by

[F1= 3, DD

(= 5 UMDY e

E

{B} = X [D]{B"}.

e=1

Equations (26a) are a set of 2N linear, nonhomo-
geneous, algebraic equations for the 2N unknowns
wun=1,2,...,N)and t,(n=1,2,...,N).

Thus far, we have not imposed the boundary con-
ditions. If we try to solve the set of algebraic equations
given by equations (26a) as it is, it would be found
that the determinant of the coefficients is zero. This is
as it should be because the set of algebraic equations,
without specifying the boundary conditions, would
have an infinite set of solutions. A unique solution is
obtained only after boundary conditions are specified.
To impose the boundary conditions, we simply replace
the equations corresponding to the differentiation with
respect to boundary nodes by the equations t,, = @, =0,
where m represents the value of the boundary nodes.
The resulting set of linear algebraic equations can then
be solved for the nodal values of temperature and
velacity by standard subroutines.

After the nodal values of temperature and velocity
are obtained, the average Nusselt number can be
computed as follows. It has been shown that the average
Nusselt number for fully developed flow in ducts under

the condition of constant axial heat flux and uniform
peripheral wall temperature is given by [16]

hd |
e 27
Nu=i="&, (27a)
where
, = Jordd (27b)
[fodA

To express equation (27b) in terms of nodal velocities
and temperatures, we note that equation (27b) can be

written as
E
Y J j wt°dxdy
e=1 A°

PP EF L — (28)
Y jj w’dxdy
e=1 A*

Substitution of equation (13) into equation (28) yields

UL

RCCLIGTY

which can be evaluated once the nodal values of tem-
perature and velocity have been computed.

Nu

(29)

RESULTS AND DISCUSSION

The finite element solution algorithm derived in the
previous section is applicable to ducts of any shape.
A computer program has been written to carry out the
numerical solutions. By supplying the locations of the
interior and boundary nodes, the values of i, j, and k
for each element as well as the values of Ra and L,
as input data to the computer program, nodal values
of temperature, velocity, and Nusselt number for ducts
with any cross-section can be computed. To assess the
accuracy and convergence of the finite element method,
computations were carried out for a square duct, an
equilateral triangular duct, a right-angled isosceles
duct, and a 30-60 right angle triangular duct. The
results are compared with exact values which have
been obtained by previous investigators.

Square ducts

The subdivision of a square duct inte triangular
finite elements can be done in many different ways.
Three possible subdivisions of the duct are shown in
Fig. 1 (with elements of equal size) and Fig. 2 (with
elements of unequal size). The FEM solutions with two
different subdivisions (corresponding to Fig. 1(a) and
Fig. 1(b) respectively) were computed for a few
selected sets of parameters Ra and L taken from [3].
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FiG. 1. Two different subdivisions (a and b) of a square duct into
triangular finite elements of equal size.

Table 1. Comparison of exact solutions and
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F1G. 2. Subdivision of a square duct into tri-
angular finite elements of unequal size.

The results are then compared with the exact solution
as shown in Table 1. For the present problem where
boundary values are zero, the two FEM solutions give
identical results.* Furthermore, the FEM solutions
converge rapidly to the exact solution as more nodal
points are used. For a total number of 169 nodes, the
maximum error of the FEM is 56 per cent at
Ra = 1007* and L = 441-8.

In order to compare the FEM and FDM, numerical
computations for a square duct with twenty-five nodes
based on the standard five-point formula of the FDM

*If the boundary conditions depend on position, two
different arrangements of triangular elements would give
different results (see [12]). The authors wish to thank the
reviewers for their criticism which lead to the identification
of some errors in the original manuscript.

FEM solutions [with uniform mesh and discretization
according to Figs. 1{a) and 1(b)] for Nusselt numbers
(at various Rayleigh numbers) in a square duct.

Ra

No. of

nodes 0 n* 107* 100 n*
25 467 4-50 4-32 6-70
81 385 387 4-30 7-60
169 371 377 7-80

Exact

[3,8] 361 369 427 8-27

% Error
in the most 27 2:1 071 56

accurate case

*While the exact values of Nu for other three cases
are taken from Han [3], this value is obtained from [8].
We tend to agree with Igbal er al. [8] that the value for
this case given by Han [3] seems to be in error.

were also carried out. It is interesting to note that,
while the FEM (with triangular elements and linear
interpolation polynomials) and the FDM for Poisson
equation are identical to each other if both the
boundary conditions and the inhomogeneous terms in
the equation are independent of position, the FEM
and the FDM solutions for Poisson equation are not
the same if either the boundary conditions or the
inhomogeneous terms is position dependent. It is for
these reasons that the FEM and the FDM give identical
results for velocity distribution and yet give different
values for temperature distribution for the special case
of Ra = 0 in the present problem. Comparison of the
numerical results for FEM and FDM also shows that
the FDM is more accurate than the FEM when a
small number of nodes are used (see Table 2). In fact,
while the FDM always gives symmetric results for
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Table 2. Comparison of Nusselt numbers at various
Rayleigh numbers for a square duct obtained by
means of the FEM and FDM with twenty-five nodes

Ra
Methods 0 n* 10 7* 100 n*
FEM 467 450 432 670
FDM 430 446 526 884
]E;‘a;]‘ 361 369 427 828

symmetric boundary conditions, the FEM with tri-
angular elements and linear interpolation polynomials
sometimes gives slightly unsymmetric results (actually
diagonally symmetric in the present problem) for
symmetric boundary conditions; its values become
more and more symmetric as more nodes are used
in the FEM.

One of the major advantages of the FEM is that
unequal mesh size does not introduce additional com-
plexity in the computer program. These characteristics
of the FEM can be utilized with advantage by allow-
ing greater density of elements in the critical regions
where changes in the dependent variables are rapid.
This consideration is desirable from the standpoint of
economy, namely, it will give us more information in
the critical region with less computer time than the
more refined grid with uniform size. It is interesting
to note that for the same number of nodes, non-
uniform mesh of FEM, as in the case of FDM, will
actually decrease in accuracy as indicated in Table 3.

Table 3. Nusselt numbers at various Rayleigh
numbers for a square duct by means of FEM
with nonuniform finite elements

Ra
No. of
nodes 0 n* 107* 1007*
25 500 4-8 4-55 707
49 417 412 4-35 748
81 407 4-36 7-68

Triangular ducts

The computer program which was used in the
calculations of square ducts can also be used for the
computation of triangular ducts by supplying the
locations of the boundary and interior nodes. The
division scheme found to be most convenient is to
draw lines parallel to all sides of the duct thus
discretizing the duct: in finite elements with shapes
similar to the cross-section of the duct as shown in
Fig. 3. Computations were carried out for an equilateral

A. L. Navak and PING CHENG
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Fi1G. 3. Subdivision of a triangular
duct into triangular finite elements
of equal size.
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F1G. 4. Centerline temperature
difference in a square duct.

triangular duct, a right-angled isosceles triangular duct,
and a 30-60 right triangular duct.

Comparison of the exact values of Nusselt numbers
at four different Rayleigh numbers for equilateral
triangular duct obtained by Aggarwala and Igbal [7]
and that of the FEM with forty-five and ninety-one
nodes are presented in Table 4. It is shown that numeri-
cal results converge to the exact values as mor¢ 10des
are used. The maximum error of the FEM with
ninety-one nodes is 12:3 per cent at Rayleigh number
equal to 10°. Owing to the lack of computer time,
only a crude mesh of forty-five nodes was attempted
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F1G. 5. Centerline velocity distri-
bution in a square duct.

Table 4. Comparison of exact solutions and FEM
solutions for Nusselt number at various Rayleigh numbers
in a equilatera] triangular duct

FEM
Exact Error
Ra 45 nodes 91 nodes [7] (%)
0 322 311 36
500 371 372 375 073
20000 874 940 10-06 65
10° 12-42 13-66 15:59 12:3

Table 5. Comparison of exact solutions
and FEM solutions for Nusselt numbers
at various Rayleigh numbers in a
30-60-90 triangular duct

FEM Exact

Ra (45 nodes) 71
500 387 370
2000 489 519
20000 879 997
10° 12-39 1521

Table 6. Comparison of exact solutions
and FEM solutions for Nusselt numbers
at various Rayleigh numbers in a
45-45-90 triangular duct

FEM Exact

Ra (with 45 nodes) [7]
0 329 2:98
2000 4-87 518
20000 876 10-03
10° 12:47 1548

for the case of right-angled isosceles triangular ducts
and 30-60 right triangular ducts. These numerical
results along with the exact values obtained by
Aggarwala and Igbal [7] are presented in Tables
5 and 6. The agreement is good for such a crude mesh.
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METHODE DES ELEMENTS FINIS APPLIQUEE A LA CONVECTION
THERMIQUE LAMINAIRE DANS DES CONDUITES VERTICALES
A SECTION DROITE ARBITRAIRE

Résumé—On considére le probléme de la convection mixte pour un écoulement laminaire permanent

établi dans des conduites verticales, avec des conditions de flux thermique constant et de température

pariétale uniforme. L’algorithme aux éléments finis avec éléments triangulaire et interpolations poly-

nomiales pour les profils de température et de vitesse est appliqué au cas des tubes de section droite

arbitraire. On obtient les valeurs numériques des nombres de Nusselt et des nombres de Rayleigh dans
le cas des conduites a sections carrée et triangulaire.

UNTERSUCHUNG DES WARMEUBERGANGS BEI LAMINARER
KONVEKTIONSSTROMUNG IN SENKRECHTEN KANALEN MIT WILLKURLICHEN
QUERSCHNITTEN MITTELS DER METHODE DER FINITEN ELEMENTE

Zusammenfassung— Es wird das Problem der kombinierten freien und erzwungenen Konvektion in einer

voll ausgebildeten stationdren Stromung durch vertikale Kanile mit den Bedingungen konstanten axialen

Wairmestroms und einheitlicher Wandtemperatur betrachtet. Finite-Element-Losungsalgorithmen mit

Dreieckselementen und stiickweisen linearen Interpolationspolynomen fiir Temperatur- und Geschwindig-

keitsprofile werden fiir Kanéle mit beliebigem Querschnitt abgeleitet. Numerische Werte fiir Nusselt—

Zahlen bei ausgewidhlten Rayleigh-Zahlen erhilt man fiir die Spezialfille der quadratischen und
dreieckigen Kanile.

AHAJIN3 KOHBEKTWUBHOIO TEMJIOOBMEHA 1PU JIAMUHAPHOM TEUEHHWH
B BEPTUKAJIbHbIX KAHAJIAX MPOU3BOJILHOTO CEYEHWUA METOAOM
KOHEYHbIX 2JIEMEHTOB

AHHOTAUMA — B pabote paccMmarpuBactes npodiemMa COBMECTHONW CBOOONHOM W BblHYXAEHHOH

KONBCKUMM T[IPH MOJHOCTBHO PA3ZBUTOM MAMHHAPHOM YCTAHOBUBLUEMCS TEUEHWH B BEPTHKANbHBIX

KAHA1aX [IPH TIOCTORHHONM OCEBOM TECNI1I0BOM [IOTOKE W OAHOPOAHON TEMNEpaType CTEHKH Ha nepu-

depuu. 118 Kana 0B NPOU3BOILHOK HOPMbI NOIYYEH AATOPHTM PELUCHHS METONOM KOHEUHBIX

YICMEHTOB ¢ TPLYTOIbHbLIMH JI7EMEHTAMU W KYCOYHLIMW JIHHEHHBIMW WHTEPMONSLUMOHHBIMH TIOJH-

HOMANH 2018 NPOdUIEit CKOPOCTH ¥ TeMaepaTypbl. 118 4aCTHBIX C/ly4aeB KBAAPATHBIX M TPEYTOJIbHbIX
KaHa10B Mo/1ydeHbl 3HaueHun yucen HyccenbTa npu BeiOpaHHbIX yKcaax Penes.



